In Vitro Study of Cancer Cell Extravasation in Microfluidic Platform

نویسنده

  • Jessie Sungyun Jeon
چکیده

Cancer metastases arise from the cancer cells that disseminate from the primary tumor, intravasate into the vascular system and eventually transmigrate across the endothelium into to a secondary site through a process of extravasation. Microfluidic systems have a major advantage in studying cancer extravasation since they can mimic aspects of the 3D in vivo situation in a controlled environment while simultaneously providing in situ imaging capabilities for visualization, thereby enabling quantification of cell-cell and cell-matrix interactions. Moreover, microfluidics enable parametric study of multiple factors in controlled and repeatable conditions. This thesis describes novel 3D microfluidic models to mimic the tumor microenvironment and vasculature during cancer cell extravasation in order to investigate the critical steps of extravasation. First, a general non-organ-specific cancer cell extravasation model is developed in which the endothelial cells that cover the walls of the microfluidic channel represent the vessel endothelium, and the entire extravasation process including tumor cell adhesion to the endothelium and subsequent transmigration can be observed. A second model is then introduced to mimic organspecific extravasation and investigate the preference of certain types of cancer to target specific organs for metastass. The improved model was used to study the specificity of human breast cancer metastases to bone, by recreating a vascularized bone-mimicking microenvironment. The tri-culture system allowed us to study the transendothelial migration of highly metastatic breast cancer cells

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Human 3D vascularized organotypic microfluidic assays to study breast cancer cell extravasation.

A key aspect of cancer metastases is the tendency for specific cancer cells to home to defined subsets of secondary organs. Despite these known tendencies, the underlying mechanisms remain poorly understood. Here we develop a microfluidic 3D in vitro model to analyze organ-specific human breast cancer cell extravasation into bone- and muscle-mimicking microenvironments through a microvascular n...

متن کامل

Fluorescent Contrast agent Based on Graphene Quantum Dots Decorated Mesoporous Silica Nanoparticles for Detecting and Sorting Cancer Cells

Background and Objectives: The inability of classic fluorescence-activated cell sorting to single cancer cell sorting is one of the most significant drawbacks of this method. The sorting of cancer cells in microdroplets significantly influences our ability to analyze cancer cell proteins. Material and Methods: We adapted a developed microfluidic device as a 3D in vitro model to sorted MCF-7 c...

متن کامل

A microfluidic 3D in vitro model for specificity of breast cancer metastasis to bone.

Cancer metastases arise following extravasation of circulating tumor cells with certain tumors exhibiting high organ specificity. Here, we developed a 3D microfluidic model to analyze the specificity of human breast cancer metastases to bone, recreating a vascularized osteo-cell conditioned microenvironment with human osteo-differentiated bone marrow-derived mesenchymal stem cells and endotheli...

متن کامل

In vitro models of the metastatic cascade: from local invasion to extravasation.

A crucial event in the metastatic cascade is the extravasation of circulating cancer cells from blood capillaries to the surrounding tissues. The past 5 years have been characterized by a significant evolution in the development of in vitro extravasation models, which moved from traditional transmigration chambers to more sophisticated microfluidic devices, enabling the study of complex cell-ce...

متن کامل

Mechanisms of tumor cell extravasation in an in vitro microvascular network platform.

A deeper understanding of the mechanisms of tumor cell extravasation is essential in creating therapies that target this crucial step in cancer metastasis. Here, we use a microfluidic platform to study tumor cell extravasation from in vitro microvascular networks formed via vasculogenesis. We demonstrate tight endothelial cell-cell junctions, basement membrane deposition and physiological value...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014